
SCA

Software Communication Architecture

Docente: Gabriele Di Stefano

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

Università degli Studi dell'Aquila, Italy

gabriele.distefano@univaq.it

Corso per Thales - Chieti

SCA - Introduction

We will see:

1 Overview

2 Architecture Overview
De�nitions
Core Framework
Operating Environment
Architectural structure of the SCA
Networking Overview

3 Operating Environment
Operating System
CORBA middleware and services
Core Framework
CF: Base Application Interfaces
CF: Base Device Interfaces
CF: Framework Control Interfaces
CF: Framework Services Interfaces

4 Domain Pro�les & Ossie

These slides are available at: http://gs.ing.univaq.it/SCA.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 2 / 208

http://gs.ing.univaq.it/SCA


Overview

SCA - Motivations

The Software De�ned Radio (SDR) is a technology without any prior
constraints or design speci�cation.

SDRs are characterized by a signi�cant software component and provide
�exibility on the physical layer.

The utilization of this technology by vendors is only practical if a common
SDR architecture is de�ned and a design model is standardized.

The Software Communications Architecture (SCA) is currently one of the
most complete and well-de�ned architecture available for SDRs.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 4 / 208

Overview

SCA - Aims

The Software Communication Architecture (SCA v.2.2) is published by the
Joint Program Executive O�ce (JPEO) of the Joint Tactical Radio System
(JTRS), and SCA v.4.0 by the Joint Tactical Networking Center (JTNC).

This architecture was developed to assist in the development of software
de�ned radio communication systems, capturing the bene�ts of recent
technology advances which are expected to greatly enhance interoperability
of communication systems and reduce development and deployment costs.

The SCA has been structured to:

1 provide for portability of applications software between di�erent SCA
implementations,

2 leverage commercial standards to reduce development cost,

3 reduce software development time through the ability to reuse design
modules,

4 build on evolving commercial frameworks and architectures.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 5 / 208



Overview

SCA - What is not

The SCA is not a system speci�cation but an implementation independent
set of rules that constrain the design of systems to achieve the objectives
listed above.

The SCA establishes an implementation-independent framework with
baseline requirements for the development of software for SDRs.

The SCA is an architectural framework that was created to maximize
portability, interoperability, and con�gurability of the software.

Constraints on software development imposed by the framework are on the
interfaces and the structure of the software and not on the implementation
of the functions.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 6 / 208

Overview

SCA - Software Structure

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 7 / 208



Overview

SCA - Software Structure (Color Coding)

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 8 / 208

Architecture Overview De�nitions

Role of SCA

Role: to provide a common infrastructure for managing the software
and hardware elements present in a system and ensuring that
their requirements and capabilities are commensurate.

How: by de�ning a set of interfaces that isolate the system
applications from the underlying hardware.

This set of interfaces is referred to as the Core Framework of the SCA.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 11 / 208



Architecture Overview De�nitions

Terminology

The word �shall� is used to indicate absolute requirements of this
speci�cation which must bstrictly followed in order to achieve compliance.
No deviations are permitted.

The phrase �shall not� is used to indicate a strict and absolute prohibition
of this speci�cation.

The word �should� is used to indicate a recommended course of action
among several possible choices, without mentioning or excluding others.
�Should not� is used to discourage a course of action without prohibiting it.

The word �may� is used to indicate a truly optional item or allowable
course of action within th scope of the speci�cation. A product which
chooses not to implement the indicated item must be able to interoperate
with one that does without impairment of required behavior.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 12 / 208

Architecture Overview Core Framework

Core Framework

The Core Framework is the essential set of open application-layer CORBA
interfaces and services which provide an abstraction of the underlying
system software and hardware. The Core Framework consists of:

Base Application Interfaces: Port, LifeCycle, TestableObject, PropertySet,
PortSupplier, ResourceFactory, and Resource, for the management and
control interfaces for all system software components.

Base Device Interfaces: Device, LoadableDevice, ExecutableDevice, and
AggregateDevice, for the management and control of hardware devices
within the system through their software interface,

Framework Control Interfaces: Application, ApplicationFactory,
DomainManager, and DeviceManager, to control the instantiation,
management, and destruction/removal of software from the system,

Framework Services Interfaces: File, FileSystem, and FileManager, that
provide additional support functions and services.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 14 / 208



Architecture Overview Core Framework

Core Framework IDL Relationships

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 15 / 208

Architecture Overview Operating Environment

Operating Environment

The SCA di�erentiates between the following software components:

Waveform �application� software: manipulates input data and determines
the output of the system. The �application� software implements the Base
Application Interfaces.

SCA �devices�: provide access to the system hardware resources and
implement the Base Device Interfaces.

Services: non-hardware (software-only) resources provided by the system
for use by applications.

Operating Environment (OE): software components which provide for the
management and execution of the SCA applications and devices. The OE
consists of an Operating System (OS), CORBA middleware (including the
OMG-de�ned Event and Naming Services), and the elements de�ned by
the Framework Control and Service Interfaces.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 17 / 208



Architecture Overview Operating Environment

Operating Environment

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 18 / 208

Architecture Overview Architectural structure of the SCA

Architectural Structure of the SCA

In the SCA, an application consists of multiple software components that
are loaded onto a distributed-processing system.
These components are managed by an implementation of the Framework
Control Interfaces.

Application Components communicate either with each other or with the
services and devices provided by the system through extensions of the
SCA-de�ned Port interface.
Communications between the application and the Framework Services
Interfaces are accomplished through the CORBA middleware.
Application may access OS functionality but is restricted to the operations
enumerated in the SCA Application Environment Pro�le (AEP): subset of
the Portable Operating System Interface (POSIX) speci�cation.

System Components are limited, managed by the Framework Control
Interfaces through the Base Device Interfaces, and are not restricted to
functionality of the OS, as are in general system speci�c.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 20 / 208



Architecture Overview Architectural structure of the SCA

Architectural Structure of the SCA

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 21 / 208

Architecture Overview Architectural structure of the SCA

Architectural Structure: management hierarchy

SCA compliant systems require certain software components to be present
in order to provide for component deployment, management, and
interconnection. These components include the DomainManager,
DeviceManager, FileManager, and FileSystem interfaces.

The Domain Manager contains knowledge of all existing implementations
installed or loaded onto the system including references to all �le systems,
device managers, and all applications and their resources.

Each Device Manager, contains complete knowledge of a set of devices
and/or services. A system may have multiple Device Managers but each
device manager registers with the domain manager.
A Device Manager may have an associated �le system.

The implementation of the Application interface (created by the
ApplicationFactory) contains all the information regarding a speci�c
application that is instantiated on the system.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 22 / 208



Architecture Overview Architectural structure of the SCA

SCA Management Hierarchy at Instantiation

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 23 / 208

Architecture Overview Architectural structure of the SCA

Domain Pro�le

The Domain Pro�le is a hierarchical collection of eXtensible Markup
Language (XML) �les that de�ne the properties of all software components
(services, devices, applications) in the system.

All CORBA software elements of the system are described by a Software
Package Descriptor (SPD) and a Software Component Descriptor (SCD)
�le.

SPD: provides identi�cation of the software (title, author, etc.) as
well as the name of the code �le (executable, library or
driver), implementation details (language, OS, etc.),
con�guration and initialization properties (contained in a
Properties File), dependencies to other SPDs and devices,
and a reference to a Software Component Descriptor.

SCD: de�nes CORBA interfaces supported and used by a speci�c
component.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 24 / 208



Architecture Overview Architectural structure of the SCA

Domain Pro�le: Applications

Since applications are composed of multiple SW components a Software
Assembly Descriptor (SAD) �le is de�ned to determine the composition
and con�guration of the application. The SAD references all SPDs needed
for this application, de�nes required connections between application
components (connection of provides and uses ports / interfaces), de�nes
needed connections to devices and services, provides additional information
on how to locate the needed devices and services, de�nes any co-location
(deployment) dependencies, and identi�es a single component within the
application as the assembly controller.

The software pro�le for an Application consists of one SAD �le that
references one or more SPD, SCD, and Properties (PRF) �les. A PRF �le
contains information about the properties applicable to a component such
as con�guration, test, execute, and allocation types.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 25 / 208

Architecture Overview Architectural structure of the SCA

Domain Pro�le: Managers

A Device Manager has an associated Device Con�guration Descriptor
(DCD) �le, similar to the application SAD. The DCD identi�es all devices
and services associated with this device manager, by referencing the
associated SPDs. The DCD also de�nes properties of the speci�c device
manager, enumerates the needed connections to services (e.g. �le systems),
and provides additional information on how to locate the domain manager.
In addition to an SPD, a device may have a Device Package Descriptor
(DPD) �le which provides a description of the hardware device associated
with this (logical) device including description, model, manufacturer, etc.

The implementation of the Domain Manager is itself described by the
DomainManager Con�guration Descriptor (DMD) which provides the
location of the (SPD) �le for the speci�c DomainManager implementation
to be loaded. It also speci�es the connections to other software components
(services and devices) which are required by the domain manager.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 26 / 208



Architecture Overview Architectural structure of the SCA

Relationship of Domain Pro�le XML File Types

Device
Managers

Applications

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 27 / 208

Architecture Overview Architectural structure of the SCA

Operating System

The SCA includes real-time embedded operating system functions, pro�led
by the Application Environment Pro�le (AEP) for applications, to provide
multi-threaded support for all software executing on the system, including
applications, devices, and services.

Appendix B to the SCA Speci�cations de�nes the AEP, based on
Standardized Application Environment Pro�le - POSIX Realtime
Application Support, IEEE Std 1003.13-2003.

The SCA dictates that an OE provides the options and functions designated
as mandatory within the AEP and constrains an application to only use
those services. The AEP divides the POSIX options and functions in:

MAN: the identi�ed function or option is mandatory;

NRQ: the identi�ed function or option is not required;

PRT: indicates that only a subset of the indicated option or unit of
functionality is required. This designation is followed by a
note or cross-reference indicating which elements are required.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 28 / 208



Architecture Overview Architectural structure of the SCA

Applications

Within the SCA, an Applications consist of one or more resources.
The Resource interface provides a common SCA API for the control and
con�guration of software components.

Application developers may extend these capabilities by creating specialized
Resource interfaces for the application. At a minimum, the extension
inherits the Resource interface.

The design of a resource's internal functionality is not dictated by SCA.
This is left to the application developer.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 29 / 208

Architecture Overview Architectural structure of the SCA

Adapters

Adapters are resources or devices used to support the use of non-CORBA
capable elements within the domain.
Adapters are used in an implementation to provide the translation between
non-CORBA-capable components or devices and CORBA-capable
Resources.

The Adapter concept is based on the industry-accepted Adapter design
pattern. Since an Adapter implements the CF CORBA interfaces known to
other CORBA-capable Resources, the translation service is transparent to
the CORBA-capable Resources.
Adapters become particularly useful to support non-CORBA-capable
processing elements.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 30 / 208



Architecture Overview Architectural structure of the SCA

Reference Model

The SCA reference model is realized by de�ning a standard unit of
functionality called a Resource.

All applications are comprised of resources and using devices.

The operations and attributes provided by the LifeCycle, TestableObject,
PortSupplier, and PropertySet interfaces establish a common approach for
interacting with any resource in a SCA environment.

The Port interface is used for pushing or pulling messages between
resources and devices. A resource may consist of zero or more input and
output message ports.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 31 / 208

Architecture Overview Architectural structure of the SCA

Conceptual model of Resources

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 32 / 208



Architecture Overview Architectural structure of the SCA

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 33 / 208

Architecture Overview Networking Overview

Networking Overview

The communications between a SCA-compliant radio system and its peer
systems are di�ned by external networking protocols.
A network of nodes is formed between systems which are interconnected by
repeaters, bridges, routers, and/or gateways.
The di�erent categories of interoperability are based upon the OSI Model.

Physical Layer Interoperability: The external networking protocols provide
a compatible physical interface, including the signaling interface, but no
higher layer processing.

Link Layer Interoperability: The external networking protocols provide link
layer processing over all physical interfaces. Intelligent routing or
switching decisions are limited.

Network Layer Interoperability: The external networking protocols provide
network layer address processing interoperability. The networks being
inter-operated are sub-networks of the same Inter-network.

Host Level Interoperability (Layers 4 � 7): Embedded applications can
exchange information with hosts attached to the network.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 35 / 208



Operating Environment

Operating Environment

The Operating Environment consists of:

the Operating System;

the CORBA middleware;

the Core Framework.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 37 / 208

Operating Environment

Relationships in the Operative Environment

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 38 / 208



Operating Environment Operating System

Operating System

The processing environment and the functions performed in the
architecture impose di�ering constraints on the architecture.

An SCA Application Environment Pro�le (AEP) is de�ned to support
portability of waveforms, scalability of the architecture, and commercial
viability.

POSIX speci�cations are used as a basis for this pro�le.

The CORBA Object Request Broker (ORB), the CF Framework Control
Interfaces, Framework Services Interfaces, and Base Device Interfaces are
not limited to using the services designated as mandatory by the SCA AEP.

Applications are limited to using the OS services that are designated as
mandatory for AEP. Applications perform �le access through the CF.

The OE and related �le systems shall support a �lename length of 40
characters and a pathname length of 1024 characters.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 40 / 208

Operating Environment Operating System

The Application Environment Pro�les (AEP)

The POSIX 1003.13 standard de�nes four Application Environment Pro�les
(AEP) PSE-51, PSE-52, PSE-53 and PSE-54.

PSE-51 � Minimal Real-time System Pro�le: single process pro�le with no
asynchronous or �le Input/Ouput (I/O) speci�ed, typically for embedded
controllers.

PSE-52 � Real-time Controller System Pro�le: single process pro�le with
asynchronous or �le Input/Ouput (I/O), typically for embedded
controllers.

PSE-53 � Dedicated Real-time System Pro�le: This pro�le adds
multi-process capability to PSE-51.

PSE-54 � ulti-Purpose Real-time System Pro�le: This pro�le includes all
the capabilities of the other three pro�les and adds multi-user capabilities.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 41 / 208



Operating Environment Operating System

The PSE-SCAS

The PSE-52 AEP was chosen as a starting point, since most operating
systems, with guaranteed real time behavior, are of the single process type.

The SCA speci�cations modi�es it and uses it in such a way as to allow
multi-process, multi-user operating systems that may conform to PSE-54.

In addition, PSE-52 includes �le and �le system capability which the SCA
needs.

This modi�ed AEP is called PSE-SCAS.

A description of the PSE-SCAS and deviations from PSE-52 are given in
MSRC-5000SRD rev. 2.2.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 42 / 208

Operating Environment Operating System

Example of PSE-SCA Speci�cation

MAN: mandatory

NRQ: not required

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 43 / 208



Operating Environment Operating System

Remarks on the AEP

� SCA de�nes a minimum set of POSIX functionality that the OS must
provide in order to preserve waveform portability

� SCA does not prohibit the usage of operating systems implementing
additional features as they may provide needed or desired functionality
for a given domain.

� Additional functionality provided by the OS, must either be abstracted
by the Core Framework or be transparent.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 44 / 208

Operating Environment CORBA middleware and services

CORBA middleware

The OE shall include middleware that, at a minimum, provides the services
and capabilities of minimumCORBA as speci�ed by the OMG Document
formal/02-08-01.

CORBA is used in the CF as the message passing technique for the
distributed processing environment.

All CF interfaces are de�ned in Interface De�nition Language (IDL)

The CORBA protocol provides message marshalling to handle the bit
packing and handshaking required for delivering, whereas SCA IDL de�nes
operations and attributes that serve as a contract between components.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 46 / 208



Operating Environment CORBA middleware and services

OE services

The OE de�nes a set of services:

� Naming Service: it is a CORBA Naming Service and must be present
in the OE.

� Log Service: the OE may include a log service. If a log service is
implemented, the log service shall conform to the OMG Lightweight
Log Service Speci�cation.

� Event Service: it is a CORBA Event Service and must be present in
the OE.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 47 / 208

Operating Environment CORBA middleware and services

Naming Service

The service is used to retrieve DomainManager and application
components object references.

Static Stringi�ed IORs are not allowed for application components: would
not work for multiple instantiations of an application and Software
Assembly Descriptor (SAD) �les would not be portable.

The SCA de�nes a subset of the OMG Naming Service IDL that a Naming
Service implementation must provide to be SCA compliant.

The minimum set of operations for Naming Service is based upon the
operations needed by the ApplicationFactory for obtaining component's
object references, application components for registering their object
references, and the Application components to destroy naming context and
component object references.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 48 / 208



Operating Environment CORBA middleware and services

Naming Service Speci�cations

The OE shall provide an implementation of a CORBA Naming Service
which implements the CosNaming module NamingContext interface
operations:

� bind

� bind_new_context

� unbind

� destroy,

� resolve

as de�ned in the Appendix A of OMG Interoperable Naming Service
Speci�cation.
The id-and-kind pair of the Naming Service's NameComponent structure is
s.t. the id element contains a string value that uniquely identi�es a
NameComponent. The kind element contains the � � (null string).

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 49 / 208

Operating Environment CORBA middleware and services

Log Service

The Log Service, if present, shall conform to the OMG Lightweight Log
Service Speci�cations Document formal/05-02-02: v1.1

A log producer is a CF component (e.g., DomainManager, Application,
ApplicationFactory, DeviceManager, Device) or an application's CORBA
capable component (e.g., Resource, ResourceFactory).

Log producers shall implement a con�gure property which is a CF
Properties type with an id of �PRODUCER_LOG_LEVEL� and a value. The
value contains all log levels that are enabled. A log producer shall only
output log records enabled.

Log producers and CF components required to write log records shall
operate normally in the absence of a log service.
Log producers shall use their component identi�er attribute in the
producerId �eld of the log record.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 50 / 208



Operating Environment CORBA middleware and services

Event Service

The OE provides an implementation of the CORBA Event Service.

The Event Service implements the PushConsumer and PushSupplier
interfaces of the CosEventComm module as described in OMG Event
Service Speci�cation using the IDL found there.
The CosEventComm CORBA Module is used by consumers for receiving
events and by producers for generating events:

A component (e.g., Resource, DomainManager, etc.) that consumes
events shall implement the CosEventComm::PushConsumer
interface.

A component (e.g., Resource, Device, DomainManager, etc.) that
produces events shall implement the CosEventComm::PushSupplier
interface and use the CosEventComm::PushConsumer interface for
generating the events.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 51 / 208

Operating Environment CORBA middleware and services

Event Service: Standard Event Channels

The OE provides two standard event channels:

Incoming Domain Management Channel: called �ODM_Channel�

Outgoing Domain Management Channel: called �IDM_Channel�

The Incoming Domain Management event channel is used by components
within the domain to generate events (e.g., Device state change event)
that are consumed by domain management functions (e.g.,
ApplicationFactory, Application, DomainManager, etc.).

The Outgoing Domain Management Channel is used by domain clients
(e.g., HCI) to receive events (e.g., additions or removals from the domain)
generated from domain management functions (e.g., ApplicationFactory,
Application, DomainManager, etc.).

Besides these two standard event channels, the OE allows other event
channels to be set up by application developers.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 52 / 208



Operating Environment CORBA middleware and services

StandardEvent Module

The StandardEvent module contains type de�nitions that are used for
passing events from event producers to event consumers (see, Appendix C
of SCA speci�cations).

The de�ned event types are:

StateChangeEventType: to indicate that the state of the event
source has changed.

DomainManagementObjectAddedEventType: to indicate that the
event source has been added to the domain.

DomainManagementObjectRemovedEventType: indicate that the
event source has been removed from the domain.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 53 / 208

Operating Environment CORBA middleware and services

StateChangeEventType

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 54 / 208



Operating Environment CORBA middleware and services

DomainManagementObjectAddedEventType and
DomainManagementObjectRemovedEventType

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 55 / 208

Operating Environment CORBA middleware and services

Events: example

The create operation of an ApplicationFactory shall send a
DomainManagementObjectAddedEventType event to the Outgoing
Domain Management event channel upon successful creation of an
application.

For this event:

1 The producerId: identi�er attribute of the application factory.

2 The sourceId: identi�er attribute of the created application.

3 The sourceName: name attribute of the created application.

4 The sourceIOR: object reference for the created application.

5 The sourceCategory is �APPLICATION�.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 56 / 208



Operating Environment Core Framework

Core Framework

As said, the Core Framework is the essential set of open application-layer
CORBA interfaces.

The Core Framework consists of:

Base Application Interfaces: Port, LifeCycle, TestableObject, PropertySet,
PortSupplier, Resource, and ResourceFactory;

Base Device Interfaces: Device, LoadableDevice, ExecutableDevice, and
AggregateDevice;

Framework Control Interfaces: Application, ApplicationFactory,
DomainManager, and DeviceManager;

Framework Services Interfaces: File, FileSystem, and FileManager.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 58 / 208

Operating Environment Core Framework

Core Framework CORBA Module

The CF interfaces are expressed in CORBA IDL: any IDL compiler for the
target language of choice may compile the generated IDL.

The CF interfaces are contained in the CF CORBA module (see Appendix
C of SCA speci�cations).

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 59 / 208



Operating Environment Core Framework

Core Famework IDL Relationship (key elements)

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 60 / 208

Operating Environment Core Framework

Core Framework in a nutshell...

A DomainManager component manages the software applications,
application factories, hardware devices (represented by software devices)
and device managers within the system.

Logical devices are software components that directly control the system's
internal hardware devices: they implement the Device, LoadableDevice, or
ExecutableDevice interfaces.

Other software components have no direct relationship with a hardware
device, but perform application services for the user and implement the
Resource interface. This interface provides a consistent way of con�guring
and tearing down these components.

Each resource can potentially communicate with other resources.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 61 / 208



Operating Environment Core Framework

Core Framework in a nutshell.

An application is a speci�c collection of one or more resources which
provides a speci�ed service or function and which is managed through the
Application interface.

The resources of an application are allocated to one or more hardware
devices by the Application Factory based upon various factors including the
current availability of hardware devices, the behavior rules of a resource,
and the loading requirements of each resource.

The resources may be created by using the ResourceFactory interface and
connected to other resources resident on the system.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 62 / 208

Operating Environment CF: Base Application Interfaces

Base Application Interfaces

We will start the description of the Core Framework from the Base
Application Interfaces:

Port

PortSupplier

LifeCycle

TestableObject

PropertySet

Resource

ResourceFactory

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 64 / 208



Operating Environment CF: Base Application Interfaces

Base Application Interfaces: Port

A component de�nition can describe the ability to accept object references
upon which the component may invoke operations.

When a component accepts an object reference in this manner, the
relationship between the component and the referent object is called a
connection; they are said to be connected.

In SCA this mechanism is supported by the Port interface.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 65 / 208

Operating Environment CF: Base Application Interfaces

Port: UML

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 66 / 208



Operating Environment CF: Base Application Interfaces

Base Application Interfaces: Port

Application developers implement the Port interface for their uses port.

An application uses port must be a Port Type.

The uses and provides ports are paired up in the Software Pro�le's
Software Assembly Descriptor (SAD) or DCD.

The provided generic operations allows ApplicationFactory and Application
implementations to setup or tear down connections between any
Application's CORBA software components.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 67 / 208

Operating Environment CF: Base Application Interfaces

Port Operations

void connectPort (in Object connection, in string

connectionId) raises (InvalidPort, OccupiedPort);

Applications require the connectPort operation to establish associations
between ports. This operation shall make a connection to the component
(a CORBA object reference) identi�ed by its input parameters.

Provides half of a two-way association; two calls required for a two-way
association.

A port may support several connections.

The input connectionId is a unique identi�er to be used by the
disconnectPort operation when breaking a speci�c connection.

InvalidPort exception: the input connection parameter is an invalid
connection for this port.
OccupiedPort exception: the port is already fully occupied.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 68 / 208



Operating Environment CF: Base Application Interfaces

Port Operations

void disconnectPort (in string connectionId) raises

(InvalidPort);

The disconnectPort operation shall break the connection to the
component identi�ed by the input connectionId parameter.

The connectionId parameter, for the Port operations, is a unique
connection identi�er created by the ApplicationFactory at the time a
connection is created between uses and provides port or is the connection
interface's connection ID in the SAD, if speci�ed.

This supports generic fan-in and fan-out implementations without the uses
or provides ports actually knowing the speci�c ports to which they are
connected.

InvalidPort exception: the input connectionId parameter is not a
known connection.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 69 / 208

Operating Environment CF: Base Application Interfaces

Base Application Interfaces: PortSupplier

This interface provides the getPort operation for those components that
provide ports. (Application, Resource, Device, DeviceManager ) as
described in their SCD XML �le.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 70 / 208



Operating Environment CF: Base Application Interfaces

PortSupplier Operations

Object getPort (in string name) raises (UnknownPort);

The getPort operation provides a mechanism to obtain a speci�c
consumer or producer port.

A port supplier may contain zero-to-many consumer and producer port
components, as speci�ed in the component's software pro�le SCD.

The getPort operation is used by the ApplicationFactory and
DomainManager to retrieve provides ports, in order to establish
connections to services or to other components.

It returns the CORBA object reference to the named port as stated in the
component's SCD.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 71 / 208

Operating Environment CF: Base Application Interfaces

Implementation of Port Connections: an Example

The Port interface in the SCA is a means of obtaining a reference to the
actual interface implemented by a component.

The interface implemented by the component provides the actual interface
for performing the data transfer and control operations. Speci�c formats,
data level protocols, and any other data structure or interpretation is
implemented as part of the operational interface.

Thus, the Port interface is used merely for establishing a connection
between two operational interfaces.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 72 / 208



Operating Environment CF: Base Application Interfaces

Implementation of Port Connections: an Example

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 73 / 208

Operating Environment CF: Base Application Interfaces

Implementation of Port Connections: an Example

CLIENT

1 asks a reference to a server
interface implementing one or
more operations de�ned by the
IDL through the
PortSupplier::getPort.

2 the connectPort is called

with the Port reference as an
argument.

3 The connectPort
implementation binds to the
server endpoint implementing
the PushPacket interface.

4 provides a sequence of packets.

SERVER

1 the DecimatePacket interface
object reference is returned as a
Port object.

2 receives the signal processing
packet stream through the
decimation �lter.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 74 / 208



Operating Environment CF: Base Application Interfaces

Base Application Interfaces: LifeCycle

The LifeCycle interface de�nes the generic operations for initializing or
releasing instantiated component-speci�c data and/or processing elements,
like resources, applications, or devices within the domain.

ApplicationFactory implementations use this interface to initialize an
application's components after components have been deployed and their
object references have been obtained.

HCI (or other domain management clients) uses this interface to release an
application or a device.

Application implementations use this operation to release an application's
components.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 75 / 208

Operating Environment CF: Base Application Interfaces

LifeCycle UML

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 76 / 208



Operating Environment CF: Base Application Interfaces

LifeCycle Operations

void initialize() raises (InitializeError);

The purpose is to provide a mechanism to set a component to a known
initial state. For example, data structures may be set to initial values,
memory may be allocated, hardware devices may be con�gured to some
state, etc.

void releaseObject() raises (ReleaseError);

The purpose of the releaseObject operation is to provide a means by which
an instantiated component may be torn down.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 77 / 208

Operating Environment CF: Base Application Interfaces

Base Application Interfaces: TestableObject

The TestableObject interface is a generic way of testing a Resource,
Application, or Device components within a domain.

Test descriptions, along with their results, are described in the Software
Pro�le's Properties File by the test XML element.

TestableObject may be used by a generic HCI to test an Application or
Device components within the domain.

TestableObject can be used for testing remotely over the air without
operator intervention.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 78 / 208



Operating Environment CF: Base Application Interfaces

TestableObject UML

Used types:

struct DataType
{
string id;

any value;
};

typedef sequence <DataType> Properties;

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 79 / 208

Operating Environment CF: Base Application Interfaces

TestableObject Operation

void runTest (in unsigned long testId, inout Properties

testValues) raises (UnknownTest, UnknownProperties);

The input testId parameter is used to determine which of its prede�ned
test implementations should be performed.

The id/value pair(s) of the testValues parameter are used to provide
additional information to the implementation-speci�c test to be run.

The runTest operation shall return the result(s) of the test in the
testValues parameter.

Valid testId and both input and output testValues (properties) shall at
a minimum be the test blue properties de�ned in the properties test
element of the component's Properties Descriptor.

The runTest operation shall not execute any testing when the input
testId or any of the input testValues are not known by the component
or are out of range.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 80 / 208



Operating Environment CF: Base Application Interfaces

Base Application Interfaces: PropertySet

The PropertySet interface de�nes configure and query operations to
access component properties/attributes.

The PropertySet interface is used to support the properties element.
Properties (Id(name)/value pairs) are concepts from the CORBA
Components, Telecommunications Information Networking Architecture
(TINA) speci�cations, and CORBA property service speci�cation.

ApplicationFactory implementations use this interface to initially con�gure
an application.

PropertySet can be used by a generic HCI to con�gure an Application,
Device, DeviceManager, and DomainManager within the domain.
PropertySet can be used for over the air remote con�guration or query
without operator intervention.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 81 / 208

Operating Environment CF: Base Application Interfaces

PropertySet UML

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 82 / 208



Operating Environment CF: Base Application Interfaces

PropertySet Operations

void configure (in Properties configProperties) raises

(InvalidConfiguration, PartialConfiguration);

The configure operation allows id/value pair con�guration properties to
be assigned to components implementing this interface.

It assigns values to the properties as indicated in the input
configProperties parameter.

Valid properties for the con�gure operation shall at a minimum be the
con�gure readwrite and writeonly properties referenced in the component's
SPD.

InvalidConfiguration exception: when a con�guration error occurs and
no con�guration properties were successfully set.

PartialConfiguration exception: some con�guration properties were
successfully set and some con�guration properties were not successfully set.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 83 / 208

Operating Environment CF: Base Application Interfaces

PropertySet Operations

void query (inout Properties configProperties) raises

(UnknownProperties);

The query operation allows a component to be queried to retrieve its
properties.

It returns all component properties when the inout parameter
configProperties is zero size.

It returns only the id/value pairs speci�ed in the configProperties
parameter if it is not zero size.

Valid properties for the query operation shall be all con�gure properties as
referenced in the component's SPD.

UnknownProperties exception: when one or more properties being
requested are not known by the component.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 84 / 208



Operating Environment CF: Base Application Interfaces

Base Application Interfaces: Resource

The Resource interface provides a common API to initialize, con�gure, and
control a software component (e.g., a Device, or an Application).

The Resource interface inherits from the LifeCycle, PropertySet,
TestableObject, and PortSupplier interfaces.

The Resource interface may also be inherited by other application
interfaces.

Resource could be used by a generic HCI (or other domain management
clients) to con�gure an Application or Device within the domain.

Each Resource in the system has a unique identi�er so that each
component can be identi�ed (e.g., as the producer of a log message).

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 85 / 208

Operating Environment CF: Base Application Interfaces

Resource example

A
multiplexer Resource with two data ports and one data output port.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 86 / 208



Operating Environment CF: Base Application Interfaces

Resource UML

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 87 / 208

Operating Environment CF: Base Application Interfaces

Resource Operations

void start() raises (StartError);

The start operation is provided to command the resource implementing
this interface to start internal processing.

StartError exception: when an error occours in starting the component.
Errors starting with �CF_E� map POSIX errors de�ned in POSIX Realtime
Application Support, IEEE Std 1003.13-2003.
enum ErrorNumberType { CF_NOTSET, CF_E2BIG, CF_EACCES, CF_EAGAIN,
CF_EBADF, CF_EBADMSG, CF_EBUSY, CF_ECANCELED, CF_ECHILD, CF_EDEADLK,
CF_EDOM, CF_EEXIST, CF_EFAULT, CF_EFBIG, CF_EINPROGRESS, CF_EINTR,
CF_EINVAL, CF_EIO, CF_EISDIR, CF_EMFILE, CF_EMLINK, CF_EMSGSIZE,
CF_ENAMETOOLONG, CF_ENFILE, CF_ENODEV, CF_ENOENT, CF_ENOEXEC, CF_ENOLCK,
CF_ENOMEM, CF_ENOSPC, CF_ENOSYS, CF_ENOTDIR, CF_ENOTEMPTY, CF_ENOTSUP,
CF_ENOTTY, CF_ENXIO, CF_EPERM, CF_EPIPE, CF_ERANGE, CF_EROFS, CF_ESPIPE,
CF_ESRCH, CF_ETIMEDOUT ,CF_EXDEV };

exception StartError { ErrorNumberType errorNumber; string msg; };

CF_NOTSET is an SCA speci�c value applicable for any exception when the
POSIX error values are not appropriate.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 88 / 208



Operating Environment CF: Base Application Interfaces

Resource Operations

void stop() raises (StopError);

The stop operation is provided to command the resource implementing
this interface to stop internal processing.

It shall not inhibit subsequent configure, query, and start operations.

StopError exception: when an error occours during an attempt to stop
the resource component.

exception StartError { ErrorNumberType errorNumber; string msg; };

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 89 / 208

Operating Environment CF: Base Application Interfaces

Base Application Interfaces: ResourceFactory

A resource factory is used to create and tear down a resource. It follows
the Factory Design Patterns.

The factory mechanism provides client-server isolation among resources
and provides a standard mechanism of obtaining a resource without
knowing its identity.

An application is not required to use resource factories, but, if used, a SPD
speci�es which Resource factories are to be used by the Application factory

The ResourceFactory keeps track of the number of times the Resource has
been referenced by clients using the Resource.

As clients release their reference to the Resource the factory destroys the
Resource when there are no more references from any client.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 90 / 208



Operating Environment CF: Base Application Interfaces

ResourceFactory UML

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 91 / 208

Operating Environment CF: Base Application Interfaces

ResourceFactory Operations

Resource createResource (in string resourceId, in Properties

qualifiers) raises (CreateResourceFailure);

The createResource operation provides the capability to create resources
in the same process space as the resource factory or to return a reference
to a resource already created.

The resourceId parameter is the identi�er for a resource.

The qualifiers parameter contains values used by the resource factory in
creation of the Resource.

The qualifiers may be used to identify the type of Resource to be
created. It is ignored if the resource already exists for the given resourceId.

A counter is used to track the number of references to a resource. The
resource is not released if the couter is not zero.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 92 / 208



Operating Environment CF: Base Application Interfaces

ResourceFactory Operations

void releaseResource (in string resourceId) raises

(InvalidResourceId);

The releaseResource operation decrements the reference count for the
speci�ed resource indicated by the resourceId parameter.

If the resource's reference count is zero, the releaseResource operation
releases the resource from the CORBA environment (server side) and make
the resource no longer available.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 93 / 208

Operating Environment CF: Base Application Interfaces

ResourceFactory Operations

void shutdown() raises (ShutdownFailure);

The shutdown operation provides the mechanism for releasing the resource
factory from the CORBA environment (server side).

ShutdownFailure exception: when processing errors prevent the release of
the resource factory from the CORBA environment or when all resources
have not been released from the resource factory.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 94 / 208



Operating Environment CF: Base Device Interfaces

Base Device Interfaces

We will proceed with the description of the Core Framework by discussing
the Base Device Interfaces:

Device

LoadableDevice

ExecutableDevice

AggregateDevice

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 96 / 208

Operating Environment CF: Base Device Interfaces

Devices in SCA

A core ability of the SCA is to represent and manage the underlying
physical hardware that implements the radio system.

The approach within the SCA is to de�ne a minimal set of interfaces that
provide essential management and control capabilities for all devices within
the radio system.

In the context of an SCA radio system, an SCA Device is a logical interface
to the underlying physical hardware. This hardware includes any physical
component that processes any part of the signal chain from the antenna
through to the I/O connection.

The SCA Device implementation resides at the application level.

In general, Device interface does not cover all the API calls to the device as
provided by the manufacturer. If there are extensions to be made available
to SCA application components, then the Device interface would be
extended by deriving another interface class from the Device interface.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 97 / 208



Operating Environment CF: Base Device Interfaces

Layering in an SCA Device interface

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 98 / 208

Operating Environment CF: Base Device Interfaces

Logical Device Interface Relationships

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 99 / 208



Operating Environment CF: Base Device Interfaces

Base Device Interfaces: Device

A Device is a type of Resource interface.

The Device interface de�nes additional capabilities and attributes for any
logical device in the domain.

It provides attributes and operations:

1 Software Pro�le Attribute � The SPD referenced by this pro�le
element (Pro�le Descriptor) de�nes the logical device capabilities
(data/command uses and provides ports, con�gure and query
properties, capacity properties, status properties, etc.), which could be
a subset of the hardware device's capabilities.

2 State Management & Status Attributes -� This information describes
the administrative, usage, and operational states of the device.

3 Capacity Operations � In order to use a device, certain capacities
(e.g., memory, performance, etc.) are obtained from the device. A
device may have multiple capacities which need to be allocated.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 100 / 208

Operating Environment CF: Base Device Interfaces

Device UML

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 101 / 208



Operating Environment CF: Base Device Interfaces

Device Attributes

readonly attribute UsageType usageState;

The readonly usageState indicates whether or not a device is actively in
use at a speci�c instant, and if so, whether or not it has spare capacity for
allocation at that instant.

enum UsageType
{

IDLE,
ACTIVE,
BUSY

};

IDLE � not in use

ACTIVE � in use, with capacity remaining for allocation

BUSY � in use, with no capacity remaining for allocation

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 102 / 208

Operating Environment CF: Base Device Interfaces

Device Attributes

attribute AdminType adminState;

The adminState indicates indicates the permission to use or prohibition
against using the device.

enum AdminType
{

LOCKED,
SHUTTING_DOWN,
UNLOCKED

};

The adminState attribute shall only allow the setting of LOCKED and
UNLOCKED values.

The adminState attribute, upon being commanded to be LOCKED, shall
transition from UNLOCKED to SHUTTING_DOWN and set the adminState to
LOCKED for its entire aggregation of devices (if any). The adminState
shall then transition to LOCKED when the device's usageState is IDLE and
its entire aggregation of devices are LOCKED.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 103 / 208



Operating Environment CF: Base Device Interfaces

Transition Diagram for adminState

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 104 / 208

Operating Environment CF: Base Device Interfaces

Device Attributes

readonly attribute OperationalType operationalState;

The operationalState indicates whether or not the device is functioning.

enum OperationalType
{

ENABLED,
DISABLED

};

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 105 / 208



Operating Environment CF: Base Device Interfaces

State Changes and Events: example

When a device changes its state, it shall generate an event.

E.g., the device shall send a StateChangeEventType event to the
Incoming Domain Management (IDM) event channel, whenever the
usageState attribute changes from ACTIVE to BUSY.

1 The producerId: identi�er attribute of the device.

2 The sourceId: identi�er attribute of the device.

3 The stateChangeCategory: is USAGE_STATE_EVENT.

4 The stateChangeFrom: is ACTIVE.

5 The stateChangeTo: is BUSY.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 106 / 208

Operating Environment CF: Base Device Interfaces

Device Attributes

readonly attribute string softwareProfile;

The softwareProfile attribute contains a pro�le element (Pro�le
Descriptor) with a �le reference to the SPD �le.

readonly attribute string label;

The label attribute contains the device's label: the meaningful name
given to a device.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 107 / 208



Operating Environment CF: Base Device Interfaces

Device Attributes

readonly attribute AggregateDevice compositeDevice;

The compositeDevice attribute contains the object reference of the
aggregate device, with which this Device is associated, or a nil CORBA
object reference if no association exists.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 108 / 208

Operating Environment CF: Base Device Interfaces

Device Operations

boolean allocateCapacity (in Properties capacities) raises

(InvalidCapacity, InvalidState);

The allocateCapacity operation shall reduce the current capacities of
the device based upon the input capacities parameter, when the
adminState is UNLOCKED, the operationalState is ENABLED, and the
usageState is not BUSY.

The allocateCapacity operation shall change the device's usageState
attribute to BUSY, when the device determines that it is not possible to
allocate any further capacity, otherwise to ACTIVE.

The allocateCapacity operation shall return TRUE, if the capacities
have been allocated, or FALSE, if not allocated.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 109 / 208



Operating Environment CF: Base Device Interfaces

Device Operations

void deallocateCapacity (in Properties capacities) raises

(InvalidCapacity, InvalidState);

The deallocateCapacity operation provides the mechanism to

return capacities back to the device, making them available to other
users.

It operates upon the input capacities parameter.

The deallocateCapacity operation shall set the usageState

attribute to ACTIVE (IDLE, resp.) when, after adjusting capacities,
any (none, resp.) of the device's capacities are still being used.

InvalidCapacity exception: the capacity ID is invalid or the capacity
value is wrong.
InvalidState exception: the device's state is LOCKED or DISABLED.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 110 / 208

Operating Environment CF: Base Device Interfaces

Transition Diagram for allocateCapacity and
deallocateCapacity

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 111 / 208



Operating Environment CF: Base Device Interfaces

Device Operations

void releaseObject() raises (ReleaseError);

Additional behavior is required for the LifeCycle::releaseObject.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 112 / 208

Operating Environment CF: Base Device Interfaces

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 113 / 208



Operating Environment CF: Base Device Interfaces

Base Device Interfaces: LoadableDevice

This interface extends the Device interface by adding software loading and
unloading behavior to a device.

Some devices only support loadable behavior; this interface provides the
mechanism for loading software onto these devices.

The actual implementation of this interface vary depending on the
underlying OE.

There are di�erent types of load (kernel module, driver, shared library,
executable) that can be performed by the load operation. These types are
based upon most OS capabilities.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 114 / 208

Operating Environment CF: Base Device Interfaces

LoadableDevice UML

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 115 / 208



Operating Environment CF: Base Device Interfaces

LoadableDevice Operations

void load (in FileSystem fs, in string fileName, in LoadType

loadKind) raises (InvalidState, InvalidLoadKind,

InvalidFileName, LoadFail);

The load operation provides the mechanism for loading software on a
device that may be subsequently executed, if it is an executable device.

The fileName parameter is a pathname relative to FileSystem parameter.

The load operation shall support the load types as stated in the device's
software pro�le LoadType allocation properties.

Multiple loads of the same �le are possible and the load operation should
account for this so that the unload operation behavior can be performed.

enum LoadType
{
KERNEL_MODULE,
DRIVER,
SHARED_LIBRARY,
EXECUTABLE

};

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 116 / 208

Operating Environment CF: Base Device Interfaces

LoadableDevice Operations

void unload (in string fileName) raises (InvalidState,

InvalidFileName);

The unload operation provides the mechanism to unload software that is
currently loaded.

The unload operation shall unload the �le identi�ed by the input fileName
parameter from the device when the number of unload requests matches
the number of load requests for the indicated �le.

InvalidState exception: if the device is LOCKED or DISABLED.
InvalidFileName exception: the �le designated by the input fileName
parameter cannot be found.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 117 / 208



Operating Environment CF: Base Device Interfaces

Base Device Interfaces: ExecutableDevice

This interface extends the LoadableDevice interface by adding execute and
terminate behavior to a device.

The ExecutableDevice interface is usually used for devices that have OS
(e,g� VxWorks, LynxWorks, Linux, etc.) that support creation of
threads/processes.

The execute and terminate operations' implementation behavior vary
depending on the underlying OE.

The parameters for the execute operation allow for the user to have
control over the stack size (STACK_SIZE) and priority (PRIORITY) for the
thread/process creation and for user parameters to be passed to the
thread/process during creation.

The user parameters are id and value string pairs so they can be converted
to (argc, argv) format, as used in POSIX.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 118 / 208

Operating Environment CF: Base Device Interfaces

ExecutableDevice UML

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 119 / 208



Operating Environment CF: Base Device Interfaces

ExecutableDevice Operations

ProcessID_Type execute (in string name, in Properties

options, in Properties parameters) raises (InvalidState,

InvalidFunction, InvalidParameters, InvalidOptions,

InvalidFileName, ExecuteFail);

The execute operation shall execute the function or �le identi�ed by the
input name parameter using the input parameters and options parameters.
Whether it is a function or a �le is implementation-speci�c.

It shall convert the input parameters (id/value string pairs) parameter to
the standard argv of the POSIX exec family of functions.

The execute operation input options parameters are STACK_SIZE_ID and
PRIORITY_ID. They are used, when speci�ed, to set the OS's
process/thread stack size and priority, for the executable image.

The execute operation shall return a unique process ID for the process
that it created.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 120 / 208

Operating Environment CF: Base Device Interfaces

execute exceptions

InvalidState exception: the device's is LOCKED, SHUTTING_DOWN or
DISABLED.

InvalidFunction exception: the function indicated by the name
parameter does not exist.

InvalidFileName exception: the �le name indicated by the name
parameter does not exist.

InvalidParameters exception: the input parameter ID or value attributes
are not valid strings.

InvalidOptions exception: the input options parameter does not comply
with STACK_SIZE_ID and PRIORITY_ID.

ExecuteFail exception: the operating system �execute� function for the
device is not successful.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 121 / 208



Operating Environment CF: Base Device Interfaces

ExecutableDevice Operations

void terminate (in ProcessID_Type processId) raise

(InvalidProcess, InvalidState);

The terminate operation terminates the execution of a process/thread,
designated by the processId input parameter, that was started up with
the execute operation.

InvalidState exception: the device is LOCKED or DISABLED.
InvalidProcess exception: the processId does not exist.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 122 / 208

Operating Environment CF: Base Device Interfaces

Base Device Interfaces: AggregateDevice

The AggregateDevice interface provides the required behavior that is
needed to add and remove child devices from a parent device.

This interface may be provided via inheritance for any device that is used
as a parent device.

Child devices use this interface to add or remove themselves to a parent
device when being created or torn-down.

E.g., consider several FPGAs on a single card. Each FPGA would be a child
device and the board that contains the FPGAs would be the parent device.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 123 / 208



Operating Environment CF: Base Device Interfaces

AggregateDevice UML

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 124 / 208

Operating Environment CF: Base Device Interfaces

AggregateDevice Attribute and Operations

readonly attribute DeviceSequence devices;

It contain a list of devices that have been added to this device.

void addDevice (in Device associatedDevice) raises

(InvalidObjectReference);

The addDevice operation adds the input associatedDevice parameter to
the AggregateDevice's devices attribute. The associatedDevice is ignored
when duplicated.

void removeDevice (in Device associatedDevice) raises

(InvalidObjectReference);

The removeDevice operation removes the input associatedDevice
parameter from the AggregateDevice's devices attribute.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 125 / 208



Operating Environment CF: Framework Control Interfaces

Framework Control Interfaces

We will proceed with the description of the Core Framework by discussing
the Framework Control Interfaces:

Application

ApplicationFactory

DeviceManager

DomainManager

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 127 / 208

Operating Environment CF: Framework Control Interfaces

Domain & Node

Domain

A Domain consists of software (SW) Applications (installed services),
Nodes (and their devices, �le systems, and services) File Manager, Event
Channel, and SW Application Instances.

Node

A Node is an abstraction of the computing node, that allows the control
and monitoring of the node resources (CPU, processes, memory and �le
systems), implements the OE, executes a DeviceManager and installed OE
& CF services (CORBA Naming Service, FileSystem, Log, Event
Service,...).

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 128 / 208



Operating Environment CF: Framework Control Interfaces

Domain

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 129 / 208

Operating Environment CF: Framework Control Interfaces

Services of a Domain

The services provided by a Domain are:

1 Installing and uninstalling application software onto the domain's �le
manager.

2 Retrieving Nodes (DeviceManager), SW Applications, and SW
Application Instances.

3 Creating, Terminating, and Controlling SW Application Instances.

4 Registering and unregistering Nodes (DeviceManager) along with their
Devices and services.

5 Registering and unregistering to the event channels. In the Domain
there are two event channels by default: Outgoing Domain Event
Channel and Incoming Domain Event Channel.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 130 / 208



Operating Environment CF: Framework Control Interfaces

Mapping of Domain Services

The Domain services are mapped to the following CF interfaces:

1 DomainManager provides the services for retrieving,
installing/registering, and uninstalling/unregistering Domain elements.

2 Application provides the services for terminating and controlling the
SW Application Instance.

3 ApplicationFactory provides services for the creation of an Application.
For each SW Application that is installed in the Domain, an
ApplicationFactory object is created that is used for deploying the
application within the Domain.

4 DeviceManager provides the services for managing a node.

5 Device interfaces (Device, LoadableDevice, ExecutableDevice,
AggregateDevice) provides the services for managing hardware devices.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 131 / 208

Operating Environment CF: Framework Control Interfaces

Framework Control Interfaces: Application

The Application interface provides the necessary operations for managing
application lifecycle, state, and behavior of waveforms and services, that
are the primary functional elements of a JTRS radio from an end-user
perspective.

An Application has characteristics very similar to a Resource.

In general, the implementation of an Application is a set of Resource
component implementations and their interconnections described by the
SAD pro�le.

The Application behaves as the proxy for the instantiated software
assembly.

Application developers don't have to develop code to tear down their
application and to behave according to the Application's software pro�le
(SAD).

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 132 / 208



Operating Environment CF: Framework Control Interfaces

Framework Control Interfaces: Application

The Application delegates its Resource operations to a Resource
component that has been identi�ed as the Assembly Controller for the
software assembly.

The design and implementation of the assembly is totally under the control
of an application developer without the need to worry about deployment
management behavior.

The Application's ports provide the capability of connecting the Application
up to other components such as an Application.
The ports can also be used to provide additional command/control and/or
status interfaces for an Application.

The Application sends out noti�cation by the Outgoing Domain event
channel of when an Application is destroyed. This allows for clients (HCI)
to become immediately aware of an Application no longer available.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 133 / 208

Operating Environment CF: Framework Control Interfaces

Framework Control Interfaces: Application

The Application interface provides the interface for the control,
con�guration, and status of an instantiated application in the domain.

The Application interface inherits the IDL interface of Resource. A created
application instance may contain Resource components and/or
non-CORBA components.

The Application interface extended the Resource interface by adding
deployment information (components associated with what devices, naming
context names for components, etc.) of how the software assembly got
deployed.

The Application interface releaseObject operation provides the interface
to release the computing resources and devices allocated during the
instantiation of the application.

An instance of an Application is returned by the create operation of an
instance of the ApplicationFactory class.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 134 / 208



Operating Environment CF: Framework Control Interfaces

Application UML

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 135 / 208

Operating Environment CF: Framework Control Interfaces

Application Attributes

readonly attribute string profile;

The readonly profile attribute shall contain a pro�le element (Pro�le
Descriptor) with a �le reference to the application's SAD �le.

readonly attribute string name;

This readonly name attribute shall contain the name of the created
application. The ApplicationFactory interface's create operation name

parameter provides the name content.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 136 / 208



Operating Environment CF: Framework Control Interfaces

Application Attributes

readonly attribute ComponentElementSequence

componentNamingContexts;

The componentNamingContexts attribute shall contain the list of
components' Naming Service Context within the application for those
components using CORBA Naming Service.

struct ComponentElementType
{
string componentId;
string elementId;

};

typedef sequence <ComponentElementType> ComponentElementSequence;

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 137 / 208

Operating Environment CF: Framework Control Interfaces

Application Attributes

readonly attribute ComponentProcessIdSequence

componentProcessIds;

The componentProcessIds attribute shall contain the list of components'
process IDs within the Application for components that are executing on a
device.

struct ComponentProcessIdType
{
string componentId;
unsigned long processId;

};

typedef sequence <ComponentProcessIdType> ComponentProcessIdSequence;

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 138 / 208



Operating Environment CF: Framework Control Interfaces

Application Attributes

readonly attribute DeviceAssignmentSequence

componentDevices;

The componentDevices attribute shall contain a list of devices, which
each component either uses, is loaded on or is executed on.

struct DeviceAssignmentType
{
string componentId;
string assignedDeviceId; //device where the component is loaded/executed

};

typedef sequence <DeviceAssignmentType> DeviceAssignmentSequence;

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 139 / 208

Operating Environment CF: Framework Control Interfaces

Application Attributes

readonly attribute ComponentElementSequence

componentImplementations;

The componentImplementations attribute shall contain the list of
components' SPD implementation IDs within the application for those
components created.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 140 / 208



Operating Environment CF: Framework Control Interfaces

Application Operations

The operations of the Application interface are those inherited from the
Resource interface.

The application shall delegate the implementation of the inherited Resource
operations (runTest, start, stop, configure, and query) to the
Application Resource component identi�ed by the application's SAD
assemblycontroller element (Assembly Controller).

The application shall propagate exceptions raised by the application's
Assembly Controller's operations.

The initialize operation shall not be propagated to the application's
components or its Assembly Controller.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 141 / 208

Operating Environment CF: Framework Control Interfaces

Application Operations

void releaseObject() raises (ReleaseError);

The releaseObject operation:

terminates execution of the application,

returns all allocated computing resources,

de-allocates the resources' capacities in use by the devices associated
with the application,

removes the message connectivity with its associated applications
(e.g., ports, resources, and logs) in the domain.

The above behavior is in addition to the LifeCycle::releaseObject
operation behavior.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 142 / 208



Operating Environment CF: Framework Control Interfaces

Application Operations: releaseObject

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 143 / 208

Operating Environment CF: Framework Control Interfaces

Application Operations: getPort

Object getPort (in string name) raises (UnknownPort);

The getPort operation obtains an object reference to a

specific visible port of the application.

The getPort operation shall return object references only

for input port names that match the port names that are in the
application SAD externalports element.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 144 / 208



Operating Environment CF: Framework Control Interfaces

Framework Control Interfaces: ApplicationFactory

The Application interface cannot be responsible for the actual creation of
an application, since an executable instance doesn't exist yet.

Users must be aware of the types of applications available in the radio and
then be able to command the creation of a new instance of a selected
application type.

The ApplicationFactory provides an interface to request the creation of a
speci�c type of application in the domain.
The user (through the user interface) can create an application instance,
provide it with pre-selected devices, and specify its con�guration properties.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 145 / 208

Operating Environment CF: Framework Control Interfaces

Framework Control Interfaces: ApplicationFactory

The ApplicationFactory interface was designed based on the Factory
Design Pattern.

There is one ApplicationFactory object for each type of application.

The ApplicationFactory creates a CORBA object implementing the
Application interface for each application created.

Application developers do not have to develop code to parse their own
software pro�les to create their application within a domain. An
ApplicationFactory CORBA object is created for each di�erent Software
Assembly Descriptor (SAD) XML �le installed in the domain.

The ApplicationFactory forms Naming Contexts, which application's
components use to place their CORBA object references. This provides the
capability of instantiating an application multiple times. Each application'
component instantiation uses the same code but a di�erent naming context
CORBA object in which to place their object references.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 146 / 208



Operating Environment CF: Framework Control Interfaces

Framework Control Interfaces: ApplicationFactory

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 147 / 208

Operating Environment CF: Framework Control Interfaces

ApplicationFactory UML

Note that ApplicationFactory is not derived from Resource.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 148 / 208



Operating Environment CF: Framework Control Interfaces

ApplicationFactory Attributes

readonly attribute string name;

The readonly name attribute contains the user-friendly name of the
application instantiated by an application factory. The name attribute shall
be identical to the softwareassembly element name attribute of the
application's Software Assembly Descriptor �le.

readonly attribute string softwareProfile;

The readonly softwarePro�le attribute shall contain a pro�le element
(Pro�le Descriptor) with a �le reference to the application's SAD �le.

readonly attribute string identifier;

The readonly identi�er attribute shall contain the unique identi�er for an
ApplicationFactory instance. The identi�er shall be identical to the
softwareassembly element id attribute of the application factory's SAD �le.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 149 / 208

Operating Environment CF: Framework Control Interfaces

ApplicationFactory Operations: create

Application create (in string name, in Properties

initConfiguration, in DeviceAssignmentSequence

deviceAssignments) raises (CreateApplicationError,

CreateApplicationRequestError, InvalidInitConfiguration);

The create operation is used to create an application within the system
domain.

The create operation provides a client interface to request the creation of
an application on client requested device(s) and/or the creation of an
application in which the application factory determines the necessary
device(s) required for instantiation of the application.

It returns an Application reference for the created application.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 150 / 208



Operating Environment CF: Framework Control Interfaces

ApplicationFactory Operations: create

The precise behavior of the create operation is quite complex.

The following steps demonstrate one scenario of the behavior of an
application factory for the creation of an application:

1 Client invokes the create operation.
2 Evaluate the Domain Pro�le for available devices that meet the

application's memory and processor requirements, available dependent
applications and libraries needed by the application. Create an
instance of an Application, if possible. Update the memory and
processor utilization of the devices.

3 Allocate the device(s) memory and processor utilization.
4 Load the application software modules on the devices using the

appropriate Device(s) interface provided the application software
modules haven't already been loaded.

5 Execute the application software modules on the devices using the
appropriate Device interface.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 151 / 208

Operating Environment CF: Framework Control Interfaces

ApplicationFactory Operations: create

7 Obtain the object reference (Resource or ResourceFactory) as
described by the SAD.

8 If the component obtained from the CORBA Naming Service is a
resource factory, narrow it to be a ResourceFactory.

9 If the component is a ResourceFactory, then create a resource using
the ResourceFactory interface.

10 If the components obtained from the Naming Services is a Resource,
narrow it to be a Resource.

11 Initialize the resource.
12 Get Port object references for the resources.
13 Connect the ports that interconnect the resources' ports together.
14 Con�gure the assemblycontroller component.
15 Write a log message on successful application creation.
16 Generate an event to indicate the application has been added to the

domain.
17 Return the Application object reference.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 152 / 208



Operating Environment CF: Framework Control Interfaces

ApplicationFactory Operations: create

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 153 / 208

Operating Environment CF: Framework Control Interfaces

Framework Control Interfaces: DeviceManager

The DeviceManager is a service that manages a set of persistent logical
Devices and services (e.g., Log Service, Event Service, Naming Service,
etc.) for a given node within a system or domain.

A given system is composed of a set of nodes. These nodes are associated
with a DeviceManager.

The DeviceManager provides the capability of simultaneously starting up
logical Devices and services on a node at power up.

As nodes are removed or added to the system (DomainManager), the set of
elements belonging to a node are easily identi�ed by the attributes of the
DeviceManager interface.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 154 / 208



Operating Environment CF: Framework Control Interfaces

Framework Control Interfaces: DeviceManager

The DeviceManager provides the capability of changing the characteristic
of the node by its associated Device Con�guration Descriptor (DCD) XML
�le and by its operations (services and logical devices can be added or
removed).

A node usually has some �le system associated with it. Therefore the
DeviceManager interface has a �le system attribute.

The DeviceManager interface inherits the PropertySet interface in order to
manage implementation properties that are described in its Software
Package Descriptor (SPD) �le.

The PortSupplier interface inherited by the DeviceManager interface is
used to connect services (e.g., Log) to the DeviceManager.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 155 / 208

Operating Environment CF: Framework Control Interfaces

DeviceManager UML

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 156 / 208



Operating Environment CF: Framework Control Interfaces

DeviceManager General Behaviour

The Device manager upon start up shall register itself with a Domain
Manager.

This requirement allows the system to be developed where at a minimum
only the DomainManager's object reference needs to be known.

A Device Manager shall use the information in the Device Manager's DCD
for determining:

Services and Devices to be deployed end executed;

Devices to be aggrated to another device;

Mount point names for �le systems;

The Device Manager's identi�er and label attribute values.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 157 / 208

Operating Environment CF: Framework Control Interfaces

DeviceManager General Behaviour

The DeviceManager shall create FileSystem components implementing the
FileSystem interface for each OS �le system, as stated in the DCD.

If multiple �le systems, the DeviceManager shall mount them to a
FileManager component (widened to a FileSystem through the FileSys
attribute).

The DeviceManager shall launch each executable devices and services
speci�ed in the DCD.

Eventually, the DeviceManager shall register itself at the DomainManager.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 158 / 208



Operating Environment CF: Framework Control Interfaces

DeviceManager General Behaviour

For each launched device, the DeviceManager supplies the execute
operation parameters consisting of:

1 Device Manager IOR � The ID is �DEVICE_MGR_IOR� and the
value is a string that is the DeviceManager stringi�ed IOR.

2 Pro�le Name � The ID is �PROFILE_NAME� and the value is the full
mounted �le system �le path name.

3 Device Identi�er � The ID is �DEVICE_ID� and the value is a string
whith the id attribute.

4 Device Label � The ID is �DEVICE_LABEL� and the value is a string.

5 Composite Device IOR - The ID is �Composite_DEVICE_IOR� and
the value is an AggregateDevice stringi�ed IOR. This parameter is
only used for child devices.

6 The execute properties as speci�ed in the DCD.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 159 / 208

Operating Environment CF: Framework Control Interfaces

DeviceManager General Behaviour

For each launched service, the DeviceManager supplies the execute
operation parameters consisting of:

1 Device Manager IOR � The ID is �DEVICE_MGR_IOR� and the
value is a string that is the DeviceManager stringi�ed IOR.

2 Service Name � The ID is �SERVICE_NAME� and the value is a
string.

3 The execute properties as speci�ed in the DCD.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 160 / 208



Operating Environment CF: Framework Control Interfaces

DeviceManager Startup

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 161 / 208

Operating Environment CF: Framework Control Interfaces

DeviceManager Attributes

The interface for a DeviceManager is based upon its attributes, which are:

1 Device Con�guration Pro�le - a mapping of physical device locations
to meaningful labels (e.g., audio1, serial1, etc.), along with the devices
and services to be deployed.

2 File System - the FileSystem associated with this device manager.

3 Device Manager Identi�er - the instance-unique identi�er for this
device manager.

4 Device Manager Label - the meaningful name given to this device
manager.

5 Registered Devices - a list of devices that have registered with this
device manager.

6 Registered Services - a list of services that have registered with this
device manager

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 162 / 208



Operating Environment CF: Framework Control Interfaces

DeviceManager Attributes

readonly attribute string identifier;

readonly attribute string label;

readonly attribute FileSystem fileSys;

readonly attribute string deviceConfigurationProfile;

The readonly deviceConfigurationProfile attribute shall contain a
pro�le element (Pro�le Descriptor) with a �le reference to the device
manager's Device Con�guration Descriptor (DCD) �le.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 163 / 208

Operating Environment CF: Framework Control Interfaces

DeviceManager Attributes

readonly attribute DeviceSequence registeredDevices;

The readonly registeredDevices attribute shall contain a list of devices that
have registered with this device manager or a sequence length of zero if no
devices have registered with the device manager.

readonly attribute ServiceSequence registeredServices;

The readonly registeredServices attribute shall contain a list of services that
have registered with this device manager or a sequence length of zero if no
services have registered with the device manager.

struct ServiceType
{
Object serviceObject;
string serviceName;

};

typedef sequence <ServiceType> ServiceSequence;

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 164 / 208



Operating Environment CF: Framework Control Interfaces

DeviceManager Operations: registerDevice,
unregisterDevice

void registerDevice (in Device registeringDevice) raises

(InvalidObjectReference);

The registerDevice operation shall add the input registeringDevice
to the registeredDevices attribute if it is not already present.

It shall register the registeringDevice with the Domain Manager when
the device manager has already registered to the domain manager.

void unregisterDevice (in Device registeredDevice) raises

(InvalidObjectReference);

The unregisterDevice operation shall remove the input
registeredDevice from the registeredDevices attribute and from the
Domain Manager when the input registeredDevice is registered with the
Device Manager.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 165 / 208

Operating Environment CF: Framework Control Interfaces

DeviceManager Operations: registerService,
unregisterService

void registerService (in Object registeringService, in

string name) raises (InvalidObjectReference);

The registerService operation shall add the input
registeringService to the registeredServices attribute if it is not
already present.

It shall register the registeringService with the Domain Manager when the
Device Manager has already registered to the domain manager.

void unregisterService (in Object unregisteringService, in

string name) raises (InvalidObjectReference);

The unregisterService operation shall remove the input registered
service speci�ed by the input name parameter from the
registeredServices attribute and from the Domain Manager.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 166 / 208



Operating Environment CF: Framework Control Interfaces

DeviceManager Operations: shutdown

void shutdown();

The shutdown operation provides the mechanism to terminate a device
manager.

The shutdown shutdown operation shall unregister the Device Manager
from the Domain Manager.

It perform releaseObject on all of the registered devices in the
DeviceManager's registeredDevices attribute.

The shutdown operation shall cause the Device Manager to be unavailable
(i.e. released from the CORBA environment and its process terminated on
the OS), when all of the device manager's registered devices.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 167 / 208

Operating Environment CF: Framework Control Interfaces

DeviceManager Operations:
getComponentImplementationID

string getComponentImplementationId (in string

componentInstantiationId);

The getComponentImplementationId operation returns the SPD
implementation ID that the DeviceManager interface used to create a
component identi�ed by the input string componentInstantiationId.

Note that a Software Package may contain multiple implementations (for
di�erent hardware) using the same properties and Sofware Component
Descriptor.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 168 / 208



Operating Environment CF: Framework Control Interfaces

DeviceManager Operations:
getComponentImplementationID

Here an example from a SPD �le:
...
<descriptor name="">

<localfile name="BasicTestDevice.scd.xml" />
</descriptor>

<implementation id="DCE:f7cd1dd5-ea37-4a56-9e68-bedd89acdff9"
aepcompliance= "aep_compliant">

<code type="Executable">
...

</code>
<compiler name="gcc" version="3.4" />
...

</implementation>

<implementation id="DCE:0ef71fab-731d-4ee1-a528-a6da2207e0c5"
aepcompliance="aep_compliant">

...

</implementation>
...

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 169 / 208

Operating Environment CF: Framework Control Interfaces

Framework Control Interfaces: DomainManager

The DomainManager provides the repository for the elements within the
system (or domain).

These elements are the installed application, application instances,
DeviceManagers (nodes and their devices and services) and event channels.

The DomainManager provides operations for the elements to register
themselves. The registration technique optimizes the operation of the
DomainManager because it does have to expend processor resources
polling for new elements.

When elements registered to the DomainManager, the DomainManager
uses the elements' XML pro�les (SAD, SPD, DCD) to obtain their
deployment characteristics.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 170 / 208



Operating Environment CF: Framework Control Interfaces

Framework Control Interfaces: DomainManager

As DeviceManagers, Devices, and services registered to the
DomainManager, the DomainManager establishes connections to services
for these elements instead of DeviceManagers. This technique provides the
most e�cient technique since the DomainManager knows when services
become available.

Connections established for services are for the Log and event channels.

The DomainManager sets up the Incoming Domain and Outgoing Domain
event channels. This allows for e�cient implementations of the
DomainManager of knowing when Devices' state changes. It also allows for
asynchronous noti�cation of system changes to the outside clients (HCI).

The DomainManager receives information from various elements in the
architecture, including all the DeviceManagers (DCD Pro�les, Device SPD
Pro�les), and the Install applications (SAD Pro�les).

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 171 / 208

Operating Environment CF: Framework Control Interfaces

DeviceManager UML

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 172 / 208



Operating Environment CF: Framework Control Interfaces

DomainManager Attributes

readonly attribute string identifier;

readonly attribute FileManager fileMgr;

readonly attribute string domainManagerProfile;

The domainManagerProfile attribute contains a pro�le element (Pro�le
Descriptor) with a �le reference to the DomainManager Con�guration
Descriptor (DMD) �le.

Files referenced within the pro�le are obtained via the domain manager's
FileManager.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 173 / 208

Operating Environment CF: Framework Control Interfaces

DomainManager Attributes

readonly attribute ApplicationSequence applications;

The applications attribute is read-only containing a sequence of
instantiated Applications in the domain.

readonly attribute ApplicationFactorySequence

applicationFactories;

The readonly applicationFactories attribute shall contain a list with
one application factory per application (SAD �le and associated �les)
successfully installed.

readonly attribute DeviceManagerSequence deviceManagers;

The readonly deviceManagers attribute shall contain a list of registered
device managers that have registered with the domain manager.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 174 / 208



Operating Environment CF: Framework Control Interfaces

DomainManager Operations: registerDeviceManager

void registerDeviceManager (in DeviceManager deviceMgr)

raises (InvalidObjectReference, InvalidProfile,

RegisterError );

The registerDeviceManager operation is used to register a device
manager, its device(s), and its services.

The registerDeviceManager operation shall:

1 add the device manager (deviceMgr parameter) to the
deviceManagers attribute, if it does not already exist.

The registerDeviceManager operation shall add the input device
manager's registered devices and services to the domain manager. The
domain manager associates the devices and service with the device
manager in order to supportunregisterDeviceManager.

2 return without exception and do nothing when that device manager
has the same identi�er as a previously registered device manager.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 175 / 208

Operating Environment CF: Framework Control Interfaces

DomainManager Operations: registerDeviceManager

3 establish any connections for the device manager indicated by the
input deviceMgr parameter, which are speci�ed in the connections
element of the device manager's DCD �le, that are possible with the
current set of registered devices and services.

4 obtain all the software pro�les from the registering device manager's
�le systems.

5 mount the device manager's �le system to the domain manager's �le
manager. The mounted FileSystem name shall have the format,
�/DomainName/HostName�, where DomainName is the name of the
domain and HostName is the input deviceMgr's label attribute.

6 write a FAILURE_ALARM log record to a domain manager's Log, upon
unsuccessful device manager registration.

7 send an event to the Outgoing Domain Management event channel
upon successful registration of a device manager.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 176 / 208



Operating Environment CF: Framework Control Interfaces

registerDiviceManager UML

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 177 / 208

Operating Environment CF: Framework Control Interfaces

registerDiviceManager UML

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 178 / 208



Operating Environment CF: Framework Control Interfaces

DomainManager Operations: registerDevice

void registerDevice (in Device registeringDevice, in

DeviceManager registeredDeviceMgr) raises

(InvalidObjectReference, InvalidProfile,

DeviceManagerNotRegistered, RegisterError);

The registerDevice operation is used to register a device for a speci�c
device manager.

The registerDevice operation shall:

1 The registerDevice operation shall add the device indicated by the
input registeringDevice parameter and the device's attributes to
the domain manager, if it does not already exist.

2 The registerDevice operation associates the device indicated by the
input registeringDevice parameter with the device manager indicated
by the input registeredDeviceMgr parameter.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 179 / 208

Operating Environment CF: Framework Control Interfaces

DomainManager Operations: registerDevice

3 The registerDevice operation shall establish any pending
connections from previously registered device managers when the
registering device completes these connections.

4 The registerDevice operation shall write an
ADMINISTRATIVE_EVENT log record to a domain manager log upon
successful device registration.

5 The registerDevice operation shall send an event to the Outgoing
Domain Management event channel, upon successful registration of a
device.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 180 / 208



Operating Environment CF: Framework Control Interfaces

registerDivice UML

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 181 / 208

Operating Environment CF: Framework Control Interfaces

DomainManager Operations: registerService

void registerService (in Object registeringService, in

DeviceManager registeredDeviceMgr, in string name) raises

(InvalidObjectReference, DeviceManagerNotRegistered,

RegisterError);

Similar behavior as registerDevice, but for a service (see next slide).

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 182 / 208



Operating Environment CF: Framework Control Interfaces

registerService UML

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 183 / 208

Operating Environment CF: Framework Control Interfaces

DomainManager Operations: installApplication

void installApplication (in string profileFileName) raises

(InvalidProfile, InvalidFileName,

ApplicationInstallationError, ApplicationAlreadyInstalled);

The installApplication operation is used to install new application
software (new ApplicationFactory) in the domain.

The input profileFileName parameter is the absolute pathname of the
application SAD. It shall verify the existence of the application's SAD �le
and other �les cited in it.

The installApplication operation shall send an event to the ODM
event channel. For this event,

The producerId is the identi�er of the domain manager.

The sourceId is the identi�er of the installed application factory.

The sourceName is the name of the installed application factory.

The sourceIOR is the object reference for the installed application factory.

The sourceCategory is �APPLICATION_FACTORY�.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 184 / 208



Operating Environment CF: Framework Control Interfaces

DomainManager unregister/unistall Operations

void unregisterDeviceManager (in DeviceManager deviceMgr)

raises (InvalidObjectReference, UnregisterError);

void unregisterDevice (in Device unregisteringDevice) raises

(InvalidObjectReference, UnregisterError);

void unregisterService (in Object unregisteringService, in

string name) raises (InvalidObjectReference,

UnregisterError);

void uninstallApplication (in string applicationId)raises

(InvalidIdentifier, ApplicationUninstallationError);

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 185 / 208

Operating Environment CF: Framework Control Interfaces

DomainManager Event Channel Operations

void registerWithEventChannel (in Object registeringObject,

in string registeringId, in string eventChannelName) raises

(InvalidObjectReference, InvalidEventChannelName,

AlreadyConnected);

The registerWithEventChannel operation is used to connect a consumer
(registeringObject) to a domain's event channel (eventChannelName).

void unregisterFromEventChannel (in string unregisteringId,

in string eventChannelName) raises (InvalidEventChannelName,

NotConnected);

The unregisterFromEventChannel operation is used to disconnect a
consumer from a domain's event channel.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 186 / 208



Operating Environment CF: Framework Control Interfaces

DomainManager and IORs management

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 187 / 208

Operating Environment CF: Framework Services Interfaces

Framework Services Interfaces: File

The File interface provides the ability to read and write �les residing within
a compliant, distributed �le system.

A �le can be thought of conceptually as a sequence of octets with a
current �lePointer describing where the next read or write will occur. This
�lePointer points to the beginning of the �le upon construction of the �le
object.

The File interface is modeled after the POSIX/C �le interface.

The File interface is used when accessing CF elements' pro�le attributes,
loading and executing �les, installing applications, and for application's
components usage.

The File interface abstracts away where the �le object resides within the
system.

Applications must use the CF File interfaces so that the location of the
�les is transparent to the application.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 189 / 208



Operating Environment CF: Framework Services Interfaces

Framework Services Interfaces: File

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 190 / 208

Operating Environment CF: Framework Services Interfaces

File Attributes

readonly attribute string fileName;

The readonly fileName attribute contains the pathname used as the input
fileName parameter of the FileSystem::create operation when the �le
was created .

readonly attribute unsigned long filePointer;

The readonly filePointer attribute contains the current �le position,
that is where the next read or write will occur.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 191 / 208



Operating Environment CF: Framework Services Interfaces

File Operations

void read (out OctetSequence data, in unsigned long length)

raises (IOException);

The read operation reads the number of octets speci�ed by the input
length parameter and advance the value of the �lePointer attribute by the
number of octets actually read.

The operation shall read less than the number of octets speci�ed in the
input-length parameter, when an end of �le is encountered.

The read operation shall return via the out data parameter a CF
OctetSequence that equals the number of octets actually read from the
File.

If the filePointer attribute re�ects the end of the File, the read
operation shall return a zero-length CF OctetSequence.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 192 / 208

Operating Environment CF: Framework Services Interfaces

File Operations

void write (in OctetSequence data) raises (IOException);

unsigned long sizeOf() raises (FileException);

void setFilePointer (in unsigned long filePointer) raises

(InvalidFilePointer, FileException);

void close() raises (FileException);

The close operation shall release any OE �le resources associated with the
component.

The close operation shall make the �le unavailable to the component.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 193 / 208



Operating Environment CF: Framework Services Interfaces

Framework Services Interfaces: FileSystem

The FileSystem interface de�nes operations that enable remote access to a
physical �le system.

The �les stored on a �le system may be plain �les or directories.

Valid individual �lenames and directory names shall be 40 characters or
less. Valid characters for a �lename or directory name are the 62
alphanumeric characters (Upper, and lowercase letters and the numbers 0
to 9) in addition to �.� , �_� and �-� characters. The �lenames �.� and �..�
are invalid in the context of a �le system.

Valid pathnames are structured according to the POSIX speci�cation
whose valid characters include the �/� (forward slash) character in addition
to the valid �lename characters. A valid pathname may consist of a single
�lename. A valid pathname shall not exceed 1024 characters.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 194 / 208

Operating Environment CF: Framework Services Interfaces

Framework Services Interfaces: FileSystem

The FileSystem interface provides a distributed (network) �le system service
capability that is used when accessing CF elements' pro�le attributes,
loading and executing �les, and installing and uninstalling applications.

The FileSystem interface abstracts away where the �le system object
resides within the system (red-side, black-side, local, or remote).

It provides the facility of passing around a logical Network File Systems
(NFS) objects as CORBA object references within the system.

The FileSystem interface also was chosen over a regular NFS since this
may not be resident on all nodes (platforms) within a system or available
for a wide range of Operating Systems.

It provides basic �le system operations one would expect on �le system.
The behavior of these operations resembles POSIX operations.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 195 / 208



Operating Environment CF: Framework Services Interfaces

Framework Services Interfaces: FileSystem

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 196 / 208

Operating Environment CF: Framework Services Interfaces

FileSystem Constants

Constants are de�ned to be used for the query operation and to retrieve
values from fileProperies.

const string SIZE = �SIZE�;

const string AVAILABLE_SPACE = �AVAILABLE_SPACE�;

const string CREATED_TIME_ID = �CREATED_TIME�;

const string MODIFIED_TIME_ID= �MODIFIED_TIME�;

const string LAST_ACCESS_TIME_ID = �LAST_ACCESS_TIME�;

For time properties, the identi�er is a constant string and the value shall be
an unsigned long long data type containing the number of seconds since
00:00:00 UTC, Jan. 1, 1970. E.g:

A value of 1411198023 corresponds to:

GMT: Sat, 20 Sep 2014 07:27:03 GMT
Local time zone: 9/20/2014, 9:27:03 AM GMT+2

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 197 / 208



Operating Environment CF: Framework Services Interfaces

FileSystem Operations

void remove (in string fileName) raises (FileException,

InvalidFileName);

void copy (in string sourceFileName, in string

destinationFileName) raises (InvalidFileName,

FileException);

boolean exists (in string fileName) raises

(InvalidFileName);

File create (in string fileName) raises (InvalidFileName,

FileException);

The create operation shall create a new File based upon the input
�leName parameter.

File open (in string fileName, in boolean read_Only) raises

(InvalidFileName, FileException);

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 198 / 208

Operating Environment CF: Framework Services Interfaces

FileSystem Operations: list

FileInformationSequence list (in string pattern) raises

(FileException, InvalidFileName);

The list operation provides a list of �les along with their information in
the �le system according to a given search pattern, which identi�es one �le
or for a set of �les.

Patterns include �*� and �?� wildcard characters used to match any
sequence of characters and any single character, respectively. These
wildcards shall only be applied following the right-most �/� character in the
pathname contained in the input pattern parameter.

The list operation shall return a FileInformationSequence for �les
that match the search pattern.

The list operation shall return a zero length sequence when no �le is
found which matches the search pattern.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 199 / 208



Operating Environment CF: Framework Services Interfaces

FileSystem Operations: list

list returns a FileInformationSequence de�ned as below.

The FileInformationType indicates the information returned for a �le.
At a minimum, the �le system shall support name, kind, and size
information for a �le. Examples of other �le properties that may be
speci�ed are created time, modi�ed time, and last access time.
The FileType indicates the type of �le entry. A �le system may have
PLAIN or DIRECTORY �les and mounted �le systems contained in a
FileSystem.
enum FileType {PLAIN, DIRECTORY, FILE_SYSTEM};

struct FileInformationType {
string name;
FileType kind;
unsigned long long size;
Properties fileProperties;

};

typedef sequence<FileInformationType> FileInformationSequence;

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 200 / 208

Operating Environment CF: Framework Services Interfaces

FileSystem Operations

void mkdir (in string directoryName) raises

(InvalidFileName, FileException);

void rmdir (in string directoryName) raises

(InvalidFileName, FileException);

void query (inout Properties fileSystemProperties) raises

(UnknownFileSystemProperties);

The query operation retrieves information about a �le system given
fileSystemProperties' ID and at least for:

SIZE - an ID value of �SIZE� causes the query operation to return an
unsigned long long containing the �le system size (in octets).

AVAILABLE_SPACE - an ID value of �AVAILABLE_SPACE� causes
the query operation to return an unsigned long long containing the
available space on the �le system (in octets).

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 201 / 208



Operating Environment CF: Framework Services Interfaces

Framework Services Interfaces: FileManager

Multiple, distributed �le systems may be accessed through a File Manager.

The FileManager interface appears to be a single �le system although the
actual �le storage may span multiple physical �le systems.

This is called a federated �le system. A federated �le system is created
using the mount and unmount operations. Typically, the Domain Manager
or system initialization software will invoke these operations.

The FileManager also extends the FileSystem interface by providing mount

and unmount behavior like a Network File System (NFS).

If a client does not need to mount and unmount �le systems, it may treat
the File Manager as a �le system by CORBA widening a FileManager

reference to a FileSystem reference.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 202 / 208

Operating Environment CF: Framework Services Interfaces

Framework Services Interfaces: FileManager

The FileManager interface provides a distributed �le manager service
capability that is used when accessing a system's (DomainManager) �le
systems.

The interface can also be used for a DeviceManager implementation for its
�le system attribute when a node has multiple �le systems.

A single File Manager can be built such that it contains all the �le systems
in the system and be treated like one �le system for a system.

This allows one to manage all the system �les from one CORBA object.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 203 / 208



Operating Environment CF: Framework Services Interfaces

Framework Services Interfaces: FileManager

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 204 / 208

Operating Environment CF: Framework Services Interfaces

Framework Services Interfaces: FileManager

Usage examples.

Based upon the pathname of a directory or �le and the set of mounted �le
systems, the �le manager delegates the FileSystem operations to the
appropriate �le system.

Example 1: if a �le system is mounted at �/ppc2�, an open operation for
a �le called /ppc2/profile.xml� would be delegated to the mounted �le
system. The mounted �le system will be given the fileName relative to it.
In this example the FileSystem's open operation would receive
�/profile.xml� as the fileName argument.

Example 2: when a client invokes the copy operation, the �le manager
delegates the operation to the appropriate �le systems (based upon
supplied pathnames) thereby allowing copy of �les between �le systems.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 205 / 208



Operating Environment CF: Framework Services Interfaces

FileManager Operations

void mount (in string mountPoint, in FileSystem file_System)

raises (InvalidFileName, InvalidFileSystem,

MountPointAlreadyExists);

void unmount (in string mountPoint) raises

(NonExistentMount);

MountSequence getMounts();

The getMounts operation shall return a MountSequence that contains the
�le systems mounted within the �le manager.

struct MountType
{
string mountPoint;
FileSystem fs;

};

typedef sequence <MountType> MountSequence;

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 206 / 208

Domain Pro�les & Ossie

Domain Pro�les & Ossie

A presentation of the Domain Pro�les will be provided along with a set of
slides on the Ossie environment.

Gabriele Di Stefano (Univ. L'Aquila) SCA Overview Corso Thales - Chieti 208 / 208


	Overview
	Architecture Overview
	Definitions
	Core Framework
	Operating Environment
	Architectural structure of the SCA
	Networking Overview

	Operating Environment
	Operating System
	CORBA middleware and services
	Core Framework
	CF: Base Application Interfaces
	CF: Base Device Interfaces
	CF: Framework Control Interfaces
	CF: Framework Services Interfaces

	Domain Profiles & Ossie

